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Abstract—We study the two-dimensional geometric
knapsack problem (2DK) in which we are given a set
of n axis-aligned rectangular items, each one with an
associated profit, and an axis-aligned square knapsack. The
goal is to find a (non-overlapping) packing of a maximum
profit subset of items inside the knapsack (without rotating
items). The best-known polynomial-time approximation
factor for this problem (even just in the cardinality case)
is 2+ ε [Jansen and Zhang, SODA 2004]. In this paper we
break the 2 approximation barrier, achieving a polynomial-
time 17

9
+ ε < 1.89 approximation, which improves to

558
325

+ ε < 1.72 in the cardinality case.
Essentially all prior work on 2DK approximation packs

items inside a constant number of rectangular containers,
where items inside each container are packed using a simple
greedy strategy. We deviate for the first time from this
setting: we show that there exists a large profit solution
where items are packed inside a constant number of
containers plus one L-shaped region at the boundary of the
knapsack which contains items that are high and narrow
and items that are wide and thin. The items of these two
types possibly interact in a complex manner at the corner
of the L.

The above structural result is not enough however: the
best-known approximation ratio for the subproblem in the
L-shaped region is 2 + ε (obtained via a trivial reduction
to one-dimensional knapsack by considering tall or wide
items only). Indeed this is one of the simplest special
settings of the problem for which this is the best known
approximation factor. As a second major, and the main
algorithmic contribution of this paper, we present a PTAS
for this case. We believe that this will turn out to be useful
in future work in geometric packing problems.

We also consider the variant of the problem with
rotations (2DKR), where items can be rotated by 90
degrees. Also in this case the best-known polynomial-time
approximation factor (even for the cardinality case) is 2+ε
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[Jansen and Zhang, SODA 2004]. Exploiting part of the
machinery developed for 2DK plus a few additional ideas,
we obtain a polynomial-time 3/2 + ε-approximation for
2DKR, which improves to 4/3+ ε in the cardinality case.

Index Terms—Approximation Algorithms; Two-
dimensional Knapsack; Geometric Packing; Rectangle
Packing;

I. INTRODUCTION

The (two-dimensional) geometric knapsack problem
(2DK) is the geometric variant of the classical (one-
dimensional) knapsack problem. We are given a set
of n items I = {1, . . . , n}, where each item i ∈ I
is an axis-aligned open rectangle (0, w(i)) × (0, h(i))
in the two-dimensional plane, and has an associated
profit p(i). Furthermore, we are given an axis-aligned
square knapsack K = [0, N ] × [0, N ]. W.l.o.g. we
next assume that all values w(i), h(i), p(i) and N are
positive integers. Our goal is to select a subset of items
OPT ⊆ I of maximum total profit opt = p(OPT ) :=∑
i∈OPT p(i) and to place them so that the selected

rectangles are pairwise disjoint and fully contained in the
knapsack. More formally, for each i ∈ OPT we have
to define a pair of coordinates (left(i), bottom(i)) that
specify the position of the bottom-left corner of i in the
packing. In other words, i is mapped into a rectangle
R(i) := (left(i), right(i)) × (bottom(i), top(i)), with
right(i) = left(i)+w(i) and top(i) = bottom(i)+h(i).
For any two i, j ∈ OPT , we must have R(i) ⊆ K and
R(i) ∩R(j) = ∅.

Besides being a natural mathematical problem,
2DK is well-motivated by practical applications. For
instance, one might want to place advertisements on a
board or a website, or cut rectangular pieces from a sheet
of some material. Also, it models a scheduling setting



where each rectangle corresponds to a job that needs
some “consecutive amount” of a given resource (memory
storage, frequencies, etc.). In all these cases, dealing with
rectangular shapes only is a reasonable simplification and
often the developed techniques can be extended to deal
with more general instances.
2DK is NP-hard [1], and it was intensively studied

from the point of view of approximation algorithms. The
best known polynomial time approximation algorithm
for it is due to Jansen and Zhang and yields a (2 + ε)-
approximation [2]. This is the best known result even in
the cardinality case (with all profits being 1). However,
there are reasons to believe that much better polynomial
time approximation ratios are possible: there is a QPTAS
under the assumption that N = npoly(logn) [3], and there
are PTASs if the profit of each item equals its area [4],
if the size of the knapsack can be slightly increased
(resource augmentation) [5], [6], if all items are rela-
tively small [7] and if all input items are squares [8],
[9]. Note that, with no restriction on N , the current
best approximation for 2DK is 2 + ε even in quasi-
polynomial time1.

All prior polynomial-time approximation algorithms
for 2DK implicitly or explicitly exploit a container-
based packing approach. The idea is to partition the
knapsack into a constant number of axis-aligned rect-
angular regions (containers). The sizes (and therefore
positions) of these containers can be guessed in polyno-
mial time. Then items are packed inside the containers
in a simple way: either one next to the other from left
to right or from bottom to top (similarly to the one-
dimensional case), or by means of the simple greedy
Next-Fit-Decreasing-Height algorithm. Indeed, also the
QPTAS in [3] can be cast in this framework, with the
relevant difference that the number of containers in this
case is poly-logarithmic (leading to a quasi-polynomial
running time).

One of the major bottlenecks to achieve approximation
factors better than 2 (in polynomial-time) is that items
that are high and narrow (vertical items) and items that
are wide and thin (horizontal items) can interact in a
very complicated way. Indeed, consider the following
seemingly simple L-packing problem: we are given a
set of items i with either w(i) > N/2 (horizontal items)
or h(i) > N/2 (vertical items). Our goal is to pack
a maximum profit subset of them inside an L-shaped
region L = ([0, N ] × [0, hL]) ∪ ([0, wL] × [0, N ]), so
that horizontal (resp., vertical) items are packed in the

1The role of N in the running time is delicate, as shown by recent
results on the related strip packing problem [10], [11], [12], [13], [14].

bottom-right (resp., top-left) of L. To the best of our
knowledge, the best-known approximation ratio for L-
packing is 2+ε: Remove either all vertical or all horizon-
tal items, and then pack the remaining items by a simple
reduction to one-dimensional knapsack (for which an
FPTAS is known). It is unclear whether a container-
based packing can achieve a better approximation factor,
and we conjecture that this is not the case. As we
will see, a better understanding of L-packing will play
a major role in the design of improved approximation
algorithms for 2DK.

A. Our contribution

In this paper we break the 2-approximation barrier for
2DK. In order to do that, we substantially deviate for
the first time from pure container-based packings, which
are, either implicitly or explicitly, at the hearth of prior
work. Namely, we consider L&C-packings that combine
Oε(1) containers plus one L-packing of the above type
(see Fig.1.(a)), and show that one such packing has large
enough profit.

While it is easy to pack almost optimally items into
containers, the mentioned 2 + ε approximation for L-
packings is not sufficient to achieve altogether a better
than 2 approximation factor: indeed, the items of the L-
packing might carry all the profit! The main algorithmic
contribution of this paper is a PTAS for the L-packing
problem. It is easy to solve this problem optimally in
pseudo-polynomial time (Nn)O(1) by means of dynamic
programming. We show that a 1+ε approximation can be
obtained by restricting the top (resp., right) coordinates
of horizontal (resp., vertical) items to a proper set that
can be computed in polynomial time nOε(1). Given that,
one can adapt the above dynamic program to run in
polynomial time.

Theorem 1. There is a PTAS for the L-packing problem.

In order to illustrate the power of our approach, we
next sketch a simple 16

9 + O(ε) approximation for the
cardinality case of 2DK (details in Section III). By
standard arguments2 it is possible to discard large items
with both sides longer than ε ·N . The remaining items
have height or width smaller than ε ·N (horizontal and
vertical items, resp.). Let us delete all items intersecting
a random vertical or horizontal strip of width ε · N
inside the knapsack. We can pack the remaining items
into Oε(1) containers by exploiting the PTAS under one-

2There can be at most Oε(1) such items in any feasible solution,
and if the optimum solution contains only Oε(1) items we can solve
the problem optimally by brute force.
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dimensional resource augmentation for 2DK in [6]3. A
vertical strip deletes vertical items with O(ε) probability,
and horizontal ones with probability roughly propor-
tional to their width, and symmetrically for a horizontal
strip. In particular, let us call long the items with longer
side larger than N/2, and short the remaining items.
Then the above argument gives in expectation roughly
one half of the profit optlong of long items, and three
quarters of the profit optshort of short ones. This is
already good enough unless optlong is large compared
to optshort.

At this point L-packings and our PTAS come into
play. We shift long items such that they form 4 stacks
at the sides of the knapsack in a ring-shaped region,
see Fig.1.(b)-(c): this is possible since any vertical long
item cannot have a horizontal long item both at its left
and at its right, and vice versa. Next we delete the least
profitable of these stacks and rearrange the remaining
long items into an L-packing, see Fig.1.(d). Thus using
our PTAS for L-packings, we can compute a solution of
profit roughly three quarters of optlong . The reader might
check that the combination of these two algorithms gives
the claimed approximation factor.

Above we used either Oε(1) containers or one L-
packing: by combining the two approaches together and
with a more sophisticated case analysis we achieve the
following result:

Theorem 2. There is a polynomial-time 558
325 + ε < 1.72

approximation algorithm for cardinality 2DK.

For weighted 2DK we face severe technical complica-
tions for proving that there is a profitable L&C-packing.
One key reason is that in the weighted case we cannot
discard large items since even one such item might
contribute a large fraction to the optimal profit. In order
to circumvent these difficulties, we exploit the corridor-
partition at the hearth of the QPTAS for 2DK in [3] (in
turn inspired by prior work in [15]). Roughly speaking,
there exists a partition of the knapsack into Oε(1) corri-
dors, consisting of the concatenation of Oε(1) partially
overlapping rectangular regions (subcorridors). In [3] the
authors partition the corridors into a poly-logarithmic
number of containers. Their main algorithm then guesses
these containers in time npoly(logn). However, we can
only handle a constant number of containers in poly-
nomial time. Therefore, we present a different way to
partition the corridors into containers: here we lose the

3Technically this PTAS is not container-based, however we can show
that it can be cast in that framework. Our version of the PTAS simplifies
the algorithms and works also in the case with rotations: this might be
a handy black-box tool.

profit of a set of thin items, which in some sense play
the role of long items in the previous discussion. These
thin items fit in a very narrow ring at the boundary
of the knapsack and we map them to an L-packing in
the same way as in the cardinality case above. Some
of the remaining non-thin items are then packed into
Oε(1) containers that are placed in the (large) part
of the knapsack not occupied by the L-packing. Our
partition of the corridors is based on a somewhat intricate
case analysis that exploits the fact that long consecutive
subcorridors are arranged in the shape of rings or spirals:
this is used to show the existence of a profitable L&C-
packing.

Theorem 3. There is a polynomial-time 17
9 + ε < 1.89

approximation algorithm for (weighted) 2DK.

1) Rotation setting: In the variant of 2DK with
rotations (2DKR), we are allowed to rotate any rect-
angle i by 90 degrees. This means that i can also
be placed in the knapsack as a rectangle of the form
(left(i), left(i)+h(i))×(bottom(i), bottom(i)+w(i)).
The best known polynomial time approximation factor
for 2DKR (even for the cardinality case) is again 2+ ε
due to [2] and the mentioned QPTAS in [3] works also
for this case.

By using the techniques described above and exploit-
ing a few more ideas, we are also able to improve the
approximation factor for 2DKR. The basic idea is that
any thin item can now be packed inside a narrow vertical
strip (say at the right edge of the knapsack) by possibly
rotating it. This way we do not lose one quarter of the
profit due to the mapping to an L-packing and instead
place all items from the ring into the mentioned strip
(while we ensure that their total width is small). The
remaining short items are packed by means of a novel
resource contraction lemma: unless there is one huge
item that occupies almost the whole knapsack (a case that
we consider separately), we can pack almost one half of
the profit of non-thin items in a reduced knapsack where
one of the two sides is shortened by a factor 1−ε (hence
leaving enough space for the vertical strip). We remark
that here we heavily exploit the possibility to rotate
items. Thus, roughly speaking, we obtain either all profit
of non-thin items, or all profit of thin items plus one
half of the profit of non-thin items: this gives a 3/2 + ε
approximation. A further refinement of this approach
yields a 4/3 + ε approximation in the cardinality case.
We remark that, while resource augmentation is a well-
established notion in approximation algorithms, resource
contraction seems to be a rather novel direction to

3



(a) (b) (c) (d)

Figure 1: (a) An L&C-packing with 4 containers, where the top-left container is packed by means of Next-Fit-
Decreasing-Height. (b) A subset of long items. (c) Such items are shifted into 4 stacks at the sides of the knapsack,
and the top stack is deleted. (d) The final packing into an L-shaped region.

explore.

Theorem 4. For any constant ε > 0, there exists
a polynomial-time 3

2 + ε approximation algorithm for
2DKR. In the cardinality case the approximation factor
can be improved to 4

3 + ε.

B. Other related work

The mentioned (2 + ε)-approximation for two-
dimensional knapsack [2] works in the weighted case
of the problem. However, in the unweighted case a
simpler (2 + ε)-approximation is known [16]. If one
can increase the size of the knapsack by a factor 1 + ε
in both dimensions then one can compute a solution of
optimal weight, rather than an approximation, in time
f(1/ε) ·nO(1) where the exponent of n does not depend
on ε [9] (for some suitable function f ). Similarly, for the
case of squares there is a (1+ε)-approximation algorithm
known with such a running time, i.e., an EPTAS [9].
This improves previous results such as a (5/4 + ε)-
approximation [17] and the mentioned PTAS [8]. Two-
dimensional knapsack is the separation problem when we
want to solve the configuration-LP for two-dimensional
bin-packing. Even though we do not have a PTAS for
the former problem, Bansal et al. [4] show how to solve
the latter LP to an (1 + ε)-accuracy using their PTAS
for two-dimensional knapsack for the special case where
the profit of each item equals its area. The best known
(asymptotic) result for two-dimensional bin packing is
due to Bansal and Khan [18] and it is based on this
configuration-LP, achieving an approximation ratio of
1.405 [19] which improves a series of previous results
[6], [20], [21], [22], [23]. See also the recent survey in
[24].

II. A PTAS FOR L-PACKINGS

In this section we present a PTAS for the problem of
finding an optimal L-packing. In this problem we are
given a set of horizontal items Ihor with width larger
than N/2, and a set of vertical items Iver with height
larger than N/2. Furthermore, we are given an L-shaped
region L = ([0, N ]×[0, hL])∪([0, wL]×[0, N ]). Our goal
is to pack a subset OPT ⊆ I := Ihor∪Iver of maximum
total profit opt = p(OPT ) :=

∑
i∈OPT p(i), such that

OPThor := OPT ∩ Ihor is packed inside the horizontal
box [0, N ] × [0, hL] and OPTver := OPT ∩ Iver is
packed inside the vertical box [0, wL] × [0, N ]. We
remark that packing horizontal and vertical items inde-
pendently is not possible due to the possible overlaps in
the intersection of the two boxes: this is what makes this
problem non-trivial, in particular harder than standard
(one-dimensional) knapsack.

Observe that in an optimal packing we can assume
w.l.o.g. that items in OPThor are pushed as far to
the right/bottom as possible. Furthermore, the items
in OPThor are packed from bottom to top in non-
increasing order of width. Indeed, it is possible to
permute any two items violating this property while
keeping the packing feasible. A symmetric claim holds
for OPTver. See Fig. 1.(d) for an illustration.

Given the above structure, it is relatively easy to define
a dynamic program (DP) that computes an optimal L-
packing in pseudo-polynomial time (Nn)O(1). The basic
idea is to scan items of Ihor (resp. Iver) in decreasing
order of width (resp., height), and each time guess if
they are part of the optimal solution OPT . At each step
either both the considered horizontal item i and vertical
item j are not part of the optimal solution, or there exist
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a guillotine cut4 separating i or j from the rest of OPT .
Depending on the cases, one can define a smaller L-
packing sub-instance (among N2 choices) for which the
DP table already contains a solution.

In order to achieve a (1 + ε)-approximation in poly-
nomial time nOε(1), we show that it is possible (with
a small loss in the profit) to restrict the possible top
coordinates of OPThor and right coordinates of OPTver
to proper polynomial-size subsets T and R, resp. We
call such an L-packing (T ,R)-restricted. By adapting
the above DP one obtains:

Lemma 5. An optimal (T ,R)-restricted L-packing can
be computed in time polynomial in m := n+ |T |+ |R|
using dynamic programming.

We will show that there exists a (T ,R)-restricted L-
packing with the desired properties.

Lemma 6. There exists a (T ,R)-restricted L-packing
solution of profit at least (1− 2ε)opt, where the sets T
and R have cardinality at most nO(1/ε1/ε) and can be
computed in polynomial time based on the input (without
knowing OPT ).

Lemmas 5 and 6 together immediately imply a PTAS
for L-packings (showing Theorem 1). The rest of this
section is devoted to the proof of Lemma 6.

We will describe a way to delete a subset of items
Dhor ⊆ OPThor with p(Dhor) ≤ 2εp(OPThor), and
shift down the remaining items OPThor \Dhor so that
their top coordinate belongs to a set T with the desired
properties. Symmetrically, we will delete a subset of
items Dver ⊆ OPTver with p(Dver) ≤ 2εp(OPTver),
and shift to the left the remaining items OPTver \Dver

so that their right coordinate belongs to a set R with
the desired properties. We remark that shifting down
(resp. to the left) items of OPThor (resp., OPTver)
cannot create any overlap with items of OPTver (resp.,
OPThor). This allows us to reason on each such set
separately.

We next focus on OPThor only: the construction for
OPTver is symmetric. For notational convenience we let
1, . . . , nhor be the items of OPThor in non-increasing
order of width and from bottom to top in the starting
optimal packing. We remark that this sequence is not
necessarily sorted (increasingly or decreasingly) in terms
of item heights: this makes our construction much more
complicated.

4A guillotine cut is an infinite, axis-parallel line ` that partitions the
items in a given packing in two subsets without intersecting any item.

Let us first introduce some useful notation. Consider
any subsequence B = {bstart, . . . , bend} of consecutive
items (interval). For any i ∈ B, we define topB(i) :=∑
k∈B,k≤i h(k) and bottomB(i) = topB(i) − h(i).

The growing subsequence G = G(B) = {g1, . . . , gh}
of B (with possibly non-contiguous items) is defined
as follows. We initially set g1 = bstart. Given the
item gi, gi+1 is the smallest-index (i.e., lowest) item
in {gi + 1, . . . , bend} such that h(gi+1) ≥ h(gi). We
halt the construction of G when we cannot find a proper
gi+1. For notational convenience, define gh+1 = bend+1.
We let BGi := {gi + 1, . . . , gi+1 − 1} for i = 1, . . . , h.
Observe that the sets BGi partition B \ G. We will
crucially exploit the following simple property.

Lemma 7. For any gi ∈ G and any j ∈
{bstart, . . . , gi+1 − 1}, h(j) ≤ h(gi).

Proof. The items j ∈ BGi = {gi+1, . . . , gi+1−1} have
h(j) < h(gi). Indeed, any such j with h(j) ≥ h(gi)
would have been added to G, a contradiction.

Consider next any j ∈ {bstart, . . . gi−1}. If j ∈ G the
claim is trivially true by construction of G. Otherwise,
one has j ∈ BGk for some gk ∈ G, gk < gi. Hence, by
the previous argument and by construction of G, h(j) <
h(gk) ≤ h(gi).

The intuition behind our construction is as follows.
Consider the growing sequence G = G(OPThor), and
suppose that p(G) ≤ ε · p(OPThor). Then we might
simply delete G, and shift the remaining items OPThor\
G = ∪jBGj as follows. Let dxey denote the smallest
multiple of y not smaller than x. We consider each set
BGj separately. For each such set, we define a baseline
vertical coordinate basej = dbottom(gj)eh(gj)/2, where
bottom(gj) is the bottom coordinate of gj in the original
packing. We next round up the height of i ∈ BGj to
ĥ(i) := dh(i)eh(gj)/(2n), and pack the rounded items
of BGj as low as possible above the baseline. The reader
might check that the possible top coordinates for rounded
items fall in a polynomial size set (using Lemma 7). It
is also not hard to check that items are not shifted up.

We use recursion in order to handle the case p(G) >
ε ·p(OPThor). Rather than deleting G, we consider each
BGj and build a new growing subsequence for each such
set. We repeat the process recursively for rhor many
rounds. Let Gr be the union of all the growing subse-
quences in the recursive calls of level r. Since the sets
Gr are disjoint by construction, there must exist a value
rhor ≤ 1

ε such that p(Grhor ) ≤ ε ·p(OPThor). Therefore
we can apply the same shifting argument to all growing
subsequences of level rhor (in particular we delete all of
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Figure 2: Illustration of the delete&shift procedure with rhor = 2. The dashed lines indicate the value of the
new baselines in the different stages of the algorithm. (Left) The starting packing. Dark and light grey items denote
the growing sequences for the calls with r = 2 and r = 1, resp. (Middle) The shift of items at the end of the
recursive calls with r = 1. Note that light grey items are all deleted, and dark grey items are not shifted. (Right)
The shift of items at the end of the process. Here we assume that the middle dark grey item is deleted.

them). In the remaining growing subsequences we can
afford to delete 1 out of 1/ε consecutive items (with a
small loss of the profit), and then apply a similar shifting
argument.

We next describe our approach in more detail. We
exploit a recursive procedure delete&shift. This
procedure takes as input two parameters: an interval
B = {bstart, . . . , bend}, and an integer round param-
eter r ≥ 1. Procedure delete&shift returns a set
D(B) ⊆ B of deleted items, and a shift function
shift : B \ D(B) → N. Intuitively, shift(i) is the
value of the top coordinate of i in the shifted packing
w.r.t. a proper baseline value which is implicitly defined.
We initially call delete&shift(OPThor, rhor), for
a proper rhor ∈ {1, . . . , 1ε} to be fixed later. Let
(D, shift) be the output of this call. The desired set
of deleted items is Dhor = D, and in the final packing
top(i) = shift(i) for any i ∈ OPThor \Dhor (the right
coordinate of any such i is N ).

The procedure behaves differently in the cases r = 1
and r > 1. If r = 1, we compute the growing sequence
G = G(B) = {g1 = bstart, . . . , gh}, and set D(B) =
G(B). Consider any set BGj = {gj + 1, . . . , gj+1 − 1},
j = 1, . . . , h. Let basej := dbottomB(gj)eh(gj)/2. We
define for any i ∈ BGj ,

shift(i) = basej +
∑

k∈BG
j ,k≤i

dh(k)eh(gj)/(2n).

Observe that shift is fully defined since ∪hj=1B
G
j =

B \D(B).
If instead r > 1, we compute the growing sequence

G = G(B) = {g1 = bstart, . . . , gh}. We next delete
a subset of items D′ ⊆ G. If h < 1

ε , we let D′ =

D′(B) = ∅. Otherwise, let Gk = {gj ∈ G : j = k
(mod 1/ε)} ⊆ G, for k ∈ {0, . . . , 1/ε − 1}. We set
D′ = D′(B) = {d1, . . . , dp} = Gx where x =
argmink∈{0,...,1/ε−1} p(Gk).

Proposition 8. One has p(D′) ≤ ε ·p(G). Furthermore,
any subsequence {gx, gx+1, . . . , gy} of G with at least
1/ε items contains at least one item from D′.

Consider each set BGj = {gj + 1, . . . , gj+1 − 1},
j = 1, . . . , h: We run delete&shift(BGj , r− 1). Let
(Dj , shiftj) be the output of the latter procedure, and
shiftmaxj be the maximum value of shiftj . We set the
output set of deleted items to D(B) = D′ ∪ (∪hj=1Dj).

It remains to define the function shift. Consider any
set BGj , and let dq be the deleted item in D′ with largest
index (hence in topmost position) in {bstart, . . . , gj}:
define baseq = dbottomB(dq)eh(dq)/2. If there is no
such dq , we let dq = 0 and baseq = 0. For any i ∈ BGj
we set:

shift(i) = baseq +
∑
gk∈G,dq<gk≤gj h(gk)

+
∑
gk∈G,dq≤gk<gj shift

max
k + shiftj(i).

Analogously, if gj 6= dq , we set

shift(gj) = baseq +
∑
gk∈G,dq<gk≤gj h(gk)

+
∑
gk∈G,dq≤gk<gj shift

max
k .

This concludes the description of delete&shift.
We next show that the final packing has the desired
properties. Next lemma shows that the total profit of
deleted items is small for a proper choice of the starting
round parameter rhor.

Lemma 9. There is a choice of rhor ∈ {1, . . . , 1ε}
such that the final set Dhor of deleted items satisfies

6



p(Dhor) ≤ 2ε · p(OPThor).

Proof. Let Gr denote the union of the sets G(B)
computed by all the recursive calls with input round
parameter r. Observe that by construction these sets are
disjoint. Let also Dr be the union of the sets D′(B) on
those calls (the union of sets D(B) for r = rhor). By
Proposition 8 and the disjointness of sets Gr one has

p(Dhor) =
∑

1≤r≤rhor
p(Dr)

≤ ε ·
∑
r<rhor

p(Gr) + p(Drhor )
≤ ε · p(OPThor) + p(Drhor ).

Again by the disjointness of sets Gr (hence Dr), there
must exists a value of rhor ∈ {1, . . . , 1ε} such that
p(Drhor ) ≤ ε · p(OPThor). The claim follows.

Next lemma shows that, intuitively, items are only
shifted down w.r.t. the initial packing.

Lemma 10. Let (D, shift) be the output of some execu-
tion of delete&shift(B, r). Then, for any i ∈ B\D,
shift(i) ≤ topB(i).

Proof. We prove the claim by induction on r. Consider
first the case r = 1. In this case, for any i ∈ BGj :

shift(i)

=dbottomB(gj)eh(gj)/2 +
∑

k∈BG
j ,k≤i

dh(k)eh(gj)/(2n)

≤topB(gj)−
1

2
h(gj) +

∑
k∈BG

j ,k≤i

h(k) + n · h(gj)
2n

=topB(i).

Assume next that the claim holds up to round parameter
r − 1 ≥ 1, and consider round r. For any i ∈ BGj with
baseq = dbottomB(dq)eh(dq)/2, one has

shift(i)

=dbottomB(dq)eh(dq)/2 +
∑

gk∈G,dq<gk≤gj

h(gk)

+
∑

gk∈G,dq≤gk<gj

shiftmaxk + shiftj(i)

≤topB(dq) +
∑

gk∈G,dq<gk≤gj

h(gk)

+
∑

gk∈G,dq≤gk<gj

topBG
k
(gk+1 − 1) + topBG

j
(i)

=topB(i).

An analogous chain of inequalities shows that
shift(gj) ≤ topB(gj) for any gj ∈ G \ D′. A
similar proof works for the special case baseq = 0.

It remains to show that the final set of values of
top(i) = shift(i) has the desired properties. This is
the most delicate part of our analysis. We define a
set T r of candidate top coordinates recursively in r.
Set T 1 contains, for any item j ∈ Ihor, and any
integer 1 ≤ a ≤ 4n2, the value a · h(j)2n . Set T r, for
r > 1 is defined recursively w.r.t. to T r−1. For any
item j, any integer 0 ≤ a ≤ 2n − 1, any tuple of
b ≤ 1/ε − 1 items j(1), . . . , j(b), and any tuple of
c ≤ 1/ε values s(1), . . . , s(c) ∈ T r−1, T r contains
the sum a · h(j)2 +

∑b
k=1 h(j(k)) +

∑c
k=1 s(k). Note

that sets T r can be computed based on the input only
(without knowing OPT ). It is easy to show that T r has
polynomial size for r = Oε(1).

Lemma 11. For any integer r ≥ 1, |T r| ≤
(2n)

r+2+(r−1)ε

εr−1 .

Proof. We prove the claim by induction on r. The claim
is trivially true for r = 1 since there are n choices for
item j and 4n2 choices for the integer a, hence altogether
at most n · 4n2 < 8n3 choices. For r > 1, the number
of possible values of T r is at most

n · 2n · (
1/ε−1∑
b=0

nb) · (
1/ε∑
c=0

|T r−1|c) ≤ 4n2 · n 1
ε−1 · |T r−1| 1ε

≤ (2n)
1
ε+1((2n)

r+1+(r−2)ε

εr−2 )
1
ε ≤ (2n)

r+2+(r−1)ε

εr−1 .

Next lemma shows that the values of shift returned
by delete&shift for round parameter r belong to
T r, hence the final top coordinates belong to T :=
T rhor .

Lemma 12. Let (D, shift) be the output of some execu-
tion of delete&shift(B, r). Then, for any i ∈ B\D,
shift(i) ∈ T r.

Proof. We prove the claim by induction on r. For the
case r = 1, recall that for any i ∈ BGj one has

shift(i) = dbottomB(gj)eh(gj)/2
+

∑
k∈BG

j ,k≤i

dh(k)eh(gj)/(2n).

By Lemma 7, bottomB(gj) =
∑
k∈B,k<gj h(k) ≤ (n−

1) ·h(gj). By the same lemma,
∑
k∈BG

j ,k≤i
h(k) ≤ (n−

7



1) · h(gj). It follows that

shift(i) ≤ 2(n− 1) · h(gj) +
h(gj)

2
+ (n− 1) · h(gj)

2n

≤ 4n2 · h(gj)
2n

.

Hence shift(i) = a · h(gj)2n for some integer 1 ≤ a ≤
4n2, and shift(i) ∈ T 1 for j = gj and for a proper
choice of a.

Assume next that the claim is true up to r−1 ≥ 1, and
consider the case r. Consider any i ∈ BGj , and assume
0 < baseq = dbottomB(dq)eh(dq)/2. One has:

shift(i) = dbottomB(dq)eh(dq)/2 +
∑

gk∈G,dq<gk≤gj

h(gk)

+
∑

gk∈G,dq≤gk<gj

shiftmaxk + shiftj(i).

By Lemma 7, bottomB(dq) ≤ (n − 1)h(dq), therefore
dbottomB(dq)eh(dq)/2 = a · h(dq)2 for some integer
1 ≤ a ≤ 2(n−1)+1. By Proposition 8, |{gk ∈ G, dq <
gk ≤ gj}| ≤ 1/ε − 1. Hence

∑
gk∈G,dq<gk≤gj h(gk) is

a value contained in the set of sums of b ≤ 1/ε−1 item
heights. By inductive hypothesis shiftmaxk , shiftj(i) ∈
T r−1. Hence by a similar argument the value of∑
gk∈G,dq≤gk<gj shift

max
k + shiftj(i) is contained in

the set of sums of c ≤ 1/ε − 1 + 1 values taken from
T r−1. Altogether, shift(i) ∈ T r. A similar argument,
without the term shiftj(i), shows that shift(gj) ∈ T r
for any gj ∈ G \ D′. The proof works similarly in the
case baseq = 0 by setting a = 0. The claim follows.

Proof of Lemma 6. We apply the procedure
delete&shift to OPThor as described before,
and a symmetric procedure to OPTver. In particular
the latter procedure computes a set Dver ⊆ OPTver
of deleted items, and the remaining items are shifted
to the left so that their right coordinate belongs to a
set R := Rrver , defined analogously to the case of
T := T rhor , for some integer rver ∈ {1, . . . , 1/ε}
(possibly different from rhor, though by averaging this
is not critical).

It is easy to see that the profit of non-deleted items sat-
isfies the claim by Lemma 9 and its symmetric version.
Similarly, the sets T and R satisfy the claim by Lemmas
11 and 12, and their symmetric versions. Finally, w.r.t.
the original packing non-deleted items in OPThor and
OPTver can be only shifted to the bottom and to the
left, resp., by Lemma 10 and its symmetric version. This
implies that the overall packing is feasible.

III. A SIMPLE IMPROVED APPROXIMATION FOR
CARDINALITY 2DK

In this section we present a simple improved ap-
proximation for the cardinality case of 2DK. We can
assume that the optimal solution OPT ⊆ I satisfies that
|OPT | ≥ 1/ε3 since otherwise we can solve the problem
optimally by brute force in time nO(1/ε3). Therefore, we
can discard from the input all large items with both sides
larger than ε · N : any feasible solution can contain at
most 1/ε2 such items, and discarding them decreases
the cardinality of OPT at most by a factor 1 + ε. Let
OPT denote this slightly sub-optimal solution obtained
by removing large items.

We will need the following technical lemma, that
holds also in the weighted case (see also Fig.1.(b)-(d)).

Lemma 13. Let H and V be given subsets of items
from some feasible solution with width and height strictly
larger than N/2, resp. Let hH and wV be the total height
and width of items of H and V , resp. Then there exists
an L-packing of a set APX ⊆ H ∪ V with p(APX) ≥
3
4 (p(H) + p(V )) into the area L = ([0, N ]× [0, hH ]) ∪
([0, wV ]× [0, N ]).

Proof. Let us consider the packing of H ∪ V . Consider
each i ∈ H that has no j ∈ V to its top (resp., to its
bottom) and shift it up (resp. down) until it hits another
i′ ∈ H or the top (resp, bottom) side of the knapsack.
Note that, since h(j) > N/2 for any j ∈ V , one of the
two cases above always applies. We iterate this process
as long as possible to move any such i. We perform
a symmetric process on V . At the end of the process
all items in H ∪ V are stacked on the 4 sides of the
knapsack5.

Next we remove the least profitable of the 4 stacks:
by a simple permutation argument we can guarantee that
this is the top or right stack. We next discuss the case
that it is the top one, the other case being symmetric. We
show how to repack the remaining items in a boundary L
of the desired size by permuting items in a proper order.
In more detail, suppose that the items packed on the left
(resp., right and bottom) have a total width of wl (resp.,
total width of wr and total height of hb). We next show
that there exists a packing into L′ = ([0, N ]× [0, hb])∪
([0, wl+wr]× [0, N ]). We prove the claim by induction.
Suppose that we have proved it for all packings into
left, right and bottom stacks with parameters w′l, w

′
r,

5It is possible to permute items in the left stack so that items
appear from left to right in non-increasing order of height, and
symmetrically for the other stacks. This is not crucial for this proof,
but we implemented this permutation in Fig.1.(c).
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and h′ such that h′ < hb or w′l + w′r < wl + wr or
w′l + w′r = wl + wr and w′r < wr.

In the considered packing we can always find a
guillotine cut `, such that one side of the cut contains
precisely one lonely item among the leftmost, rightmost
and bottommost items. Let ` be such a cut. First assume
that the lonely item j is the bottommost one. Then by
induction the claim is true for the part above ` since the
part of the packing above ` has parameters wl, wr, and
h − h(j). Thus, it is also true for the entire packing.
A similar argument applies if the lonely item j is the
leftmost one.

It remains to consider the case that the lonely item j
is the rightmost one. We remove j temporarily and move
all other items by w(j) to the right. Then we insert j
at the left (in the space freed by the previous shifting).
By induction, the claim is true for the resulting packing
since it has parameters wl + w(j), wr − w(j), and h,
resp.

For our algorithm, we consider the following three
packings. The first uses an L that occupies the full
knapsack, i.e., wL = hL = N . Let OPTlong ⊆ OPT
be the items in OPT with height or width strictly larger
than N/2 and define OPTshort = OPT \OPTlong. We
apply Lemma 13 to OPTlong and hence obtain a packing
for this L with a profit of at least 3

4p(OPTlong). We run
our PTAS for L-packings from Theorem 1 on this L, the
input consisting of all items in I having one side longer
than N/2. Hence we obtain a solution with profit at least
( 34 −O(ε))p(OPTlong).

For the other two packings we employ the one-
sided resource augmentation PTAS from [6]. We ap-
ply this algorithm to the slightly reduced knapsacks
[0, N ]× [0, N/(1 + ε)] and [0, N/(1 + ε)]× [0, N ] such
that in both cases it outputs a solution that fits in the
full knapsack [0, N ] × [0, N ] and whose profit is by at
most a factor 1 +O(ε) worse than the optimal solution
for the respective reduced knapsacks. We will prove in
Theorem 14 that one of these solutions yields a profit of
at least ( 12 − O(ε))p(OPT ) + ( 14 − O(ε))p(OPTshort)
and hence one of our packings yields a ( 169 + ε)-
approximation.

Theorem 14. There is a 16
9 + ε approximation for the

cardinality case of 2DK.

Proof. Let OPT be the considered optimal solution with
opt = p(OPT ). Recall that there are no large items.
Let also OPTvert ⊆ OPT be the (vertical) items with
height more than ε ·N (hence with width at most ε ·N ),
and OPThor = OPT \OPTver (horizontal items). Note

that with this definition both sides of a horizontal item
might have a length of at most ε ·N . We let optlong =
p(OPTlong) and optshort = p(OPTshort).

As mentioned above, our L-packing PTAS achieves a
profit of at least ( 34−O(ε))optlong which can be seen by
applying Lemma 13 with H = OPTlong ∩OPThor and
V = OPTlong∩OPTver. In order to show that the other
two packings yield a good profit, consider a random
horizontal strip S = [0, N ]×[a, a+ε·N ] (fully contained
in the knapsack) where a ∈ [0, (1 − ε)N) is chosen
unformly at random. We remove all items of OPT
intersecting S. Each item in OPThor and OPTshort ∩
OPTver is deleted with probability at most 3ε and
1
2 + 2ε, resp. Therefore the total profit of the remaining
items is in expectation at least (1 − 3ε)p(OPThor) +
( 12 − 2ε)p(OPTshort ∩ OPTvert). Observe that the re-
sulting solution can be packed into a restricted knapsack
of size [0, N ] × [0, N/(1 + ε)] by shifting down the
items above the horizontal strip. Therefore, when we
apply the resource augmentation algorithm in [6] to the
knapsack [0, N ] × [0, N/(1 + ε)], up to a factor 1 − ε,
we will find a solution of (deterministically!) at least
the same profit. In other terms, this profit is at least
(1−4ε)p(OPThor)+( 12 −

5
2ε)p(OPTshort∩OPTvert).

By a symmetric argument, we obtain a solu-
tion of profit at least (1 − 4ε)p(OPTver) + (12 −
5
2ε)p(OPTshort∩OPThor) when we apply the algorithm
in [6] to the knapsack [0, N/(1 + ε)] × [0, N ]. Thus
the best of the latter two solutions has profit at least
( 12 − 2ε)optlong + ( 34 −

13
4 ε)optshort = ( 12 − 2ε)opt +

( 14 −
5
4ε)optshort. The best of our three solutions has

therefore value at least ( 9
16 −O(ε))opt where the worst

case is achieved for roughly optlong = 3 · optshort.

In the above result we use either an L-packing or a
container packing. The 558

325+ε approximation claimed in
Theorem 2 is obtained by a careful combination of these
two packings. In particular, we consider configurations
where long items (or a subset of them) can be packed
into a relatively small L, and pack part of the remaining
short items in the complementary rectangular region (us-
ing container packings and Steinberg’s algorithm [25]).
The proof is based on a long and tedious case analysis,
that we omit for reasons of space.

IV. WEIGHTED CASE WITHOUT ROTATIONS

As mentioned in the introduction, for the weighted
case we exploit the corridor-partition in [3]. Due to
reasons of space, we will give only the high level
intuition and omit the technical details. We consider an
almost optimal solution OPT . By standard arguments,
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we can assume that OPT does not contain any small
item, with both sides much smaller than N (such items
can be packed very accurately in the residual free space
at the end of the process).

Recall that we are given a constant number of cor-
ridors, each one consisting of a constant number of
subcorridors. We partition each subcorridor into a con-
stant number of containers. We start the partition from a
subcorridor that is either at the end of a corridor or that
is the central subcorridor of 3 consecutive subcorridors
arranged in an U -shaped manner. We partition this
subcorridor into a constant number of containers of
roughly the same size. It is possible to pack almost
all items contained in the considered subcorridor into
the containers. The remaining items would fit into an
additional very thin container, however, our space does
not suffice to add it to the rest of the packing. The
constructed containers induce a partition of the rest of
the corridor into a constant number of smaller corridors,
and the process is then applied recursively until each
subcorridor has been partitioned into containers. This
yields a constant number of containers overall. We call
the items F packed into the containers fat, and the
remaining items T thin.

We say that a subcorridor is long if (essentially) its
longer side is longer than N/2, and it is short otherwise.
We denote by L the items that are contained in a long
subcorridor and by S the remaining items. We define
LF = L ∩ F and analogously SF , LT , and ST . We
observe that if a corridor has several consecutive long
subcorridors then those are arranged in the shape of
spirals or rings. One can show that if a subcorridor is
processed last (among all subcorridors of some corridor)
in the above container partition then we can pack all its
items into the containers and hence do not loose the
profit of any of its items (i.e., there are no thin items in
this subcorridor).

In the partitioning routine above we have some flexi-
bility in the order in which we partition the subcorridors,
which also results in different sets F and T . Depending
on this order, a case analysis (involving 7 cases) shows
that we can obtain container-based solutions roughly of
profit either p(LF ) + p(SF ), or p(LF ) + p(SF )/2 +
p(LT )/2, or p(LF ) + p(SF )/2 + p(ST )/2. This is not
yet sufficient to a achieve a better than 2 approximation:
at this point our PTAS for L-packings comes into play.
Thin items are either very wide and thin (horizontal)
or very tall and narrow (vertical). In the above partition
method we can enforce that the total height/width of hor-
izontal/vertical thin items is an arbitrarily small fraction

of N . Therefore, we can pack (roughly) at least three
quarters of the profit of LT in a very thin L-shaped
region at the boundary of the knapsack by a similar
argument as in Section III, and then pack also ST in
a slightly larger L-shaped region. The space left free by
this L-packing is almost the entire knapsack. A random
strip argument similar to the one in Section III shows that
in the remaining space there is a packing with constantly
many containers which achieves at least half of the profit
of SF . Altogether we essentially get a profit at least
3
4p(LT ) + p(ST ) + 1

2p(SF ). One can show that the
best solution among the ones provided above yields a
(17/9 +O(ε))-approximation algorithm where the term
O(ε) is due to using PTASs for computing the actual
packing and certain omitted technical details.

V. IMPROVED APPROXIMATION FOR CARDINALITY
2DKR

In this section we present a simple polynomial time
(3/2 + ε)-approximation algorithm for 2DKR for the
cardinality case. We next assume w.l.o.g. that ε is
sufficiently small.

Consider some optimal solution OPT to 2DKR, with
an associated packing in the knapsack. We crucially
exploit the following resource contraction lemma, which
is our main new idea in the rotation case.

Lemma 15. (Resource Contraction Lemma) For given
positive constants ε ≤ 1/13 and εsmall < ε

1
2ε+1,

suppose that there exists a feasible packing of a set
of items M , with |M | ≥ 1/ε3small. Then it is possible
to pack a subset M ′ ⊆ M of cardinality at least
2
3 (1 − O(ε))|M | into [0,

(
1− ε 1

2ε+1
)
N ] × [0, N ] if

rotations are allowed.

Given the above lemma, it is not hard to achieve the
desired approximation.

Theorem 16. There is a 3
2 + ε approximation for the

cardinality case of 2DKR.

Proof. Let OPT be some optimal solution with an
associated packing. If |OPT | ≤ 1

ε3small
, then we can

solve the problem optimally by brute force. Otherwise,
by Lemma 15 there exists OPT ′ ⊆ OPT of cardinality
at least 2

3 (1 − O(ε))|OPT | that can be packed inside
K ′ = [0,

(
1− ε 1

2ε+1
)
N ] × [0, N ]. Therefore, applying

the resource augmentation PTAS in [6] to K ′ with proper
constants, one obtains a feasible packing of at least
|OPT ′| items into the original knapsack.

It remains to prove Lemma 15. W.l.o.g., assume
h(i) ≥ w(i) for all items i ∈ M . Let us remove
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from M all items that are larger than εsmallN in both
dimensions. Let M2 be the resulting set: observe that
|M2| ≥ (1− εsmall)|M |.

We next show how to remove from M2 a set of
cardinality at most ε|M2| such that the remaining items
M3 are either very tall or not too tall. The exact meaning
will be given next. We use the notation [k] = {1, . . . , k}
for a positive integer k.

Lemma 17. Given any constant 1/2 > ε > 0, there
exists a value i ∈ [d1/(2ε)e] such that all items in M2

having height in ((1 − 2εi)N, (1 − εi+1)N ] have total
cardinality at most ε|M2|.

Proof. Let Ki be the set of items in M2 with height in
((1 − 2εi)N, (1 − εi+1)N ] for i ∈ [d1/(2ε)e]. An item
can belong to at most two such sets as ε < 1/2. Thus,
the smallest such set has cardinality at most ε|M2|.

We remove from M2 the elements from the set Ki of
minimum cardinality guaranteed by the above lemma,
and let M3 be the resulting set. We also define εs = εi

for the same i. Thus, εs ≥ ε1/2ε > εsmall/ε. Note that
the items in M3 have height either at most (1− 2εs)N
or above (1− ε · εs)N .

For any δ > 0 denote the strips of width N and height
δN at the top and bottom of the knapsack by ST,δ :=
[0, N ] × [(1 − δ)N,N ] and SB,δ := [0, N ] × [0, δN ],
resp. Similarly, denote the strips of height N and width
δN to the left and right of the knapsack by SL,δ :=
[0, δN ] × [0, N ] and SR,δ := [(1 − δ)N,N ] × [0, N ],
resp. The set of items in M3 intersected by and fully
contained in strip SK,δ are denoted by EK,δ and CK,δ ,
resp. Obviously CK,δ ⊆ EK,δ . Let a(I) denote the total
area of items in I , i.e., a(I) =

∑
i∈I w(i) · h(i).

Lemma 18. Either a(EL,εs ∪ ER,εs) ≤
(1+8εs)

2 N2 or
a(ET,εs ∪ EB,εs) ≤

(1+8εs)
2 N2.

Proof. Let us define V := EL,εs ∪ ER,εs and H :=
ET,εs ∪ EB,εs . Note that, a(V ) + a(H) = a(V ∪H) +
a(V ∩H). Clearly a(V ∪H) ≤ N2 since all items fit into
the knapsack. On the other hand, except possibly four
items (the ones that contain at least one of the points
(εsN, εsN), ((1− εs)N, εsN), (εsN, (1− εs)N), ((1−
εs)N, (1− εs)N)) all other items in V ∩H lie entirely
within the four strips SL,εs ∪ SR,εs ∪ ST,εs ∪ SB,εs .
Thus a(V ∩ H) ≤ 4εsN

2 + 4εsmallN
2 ≤ 8εsN

2, as
εsmall ≤ εs. We can conclude that min{a(V ), a(H)} ≤
a(V ∪H)+a(V ∩H)

2 ≤ (1+8εs)
2 N2.

Now we state Steinberg’s Theorem that we use in
Lemma 20.

Theorem 19 (A. Steinberg [25]). We are given a set of
items I ′ and a knapsack Q = [0, w]× [0, h]. Let wmax ≤
w and hmax ≤ h be the maximum width and maximum
height among the items in I ′ respectively. Also we denote
x+ := max(x, 0). If

2a(I ′) ≤ wh− (2wmax − w)+(2hmax − h)+

then I ′ can be packed into Q.

Lemma 20. Given a constant 0 < εa < 1/2 and a set
of items M̃ := {1, . . . , k} with w(i) ≤ εsmallN for all
i ∈ M̃ . If a(M̃) ≤ (1/2+εa)N

2, then a subset of M̃ of
cardinality at least (1 − 2εs − 2εa)|M̃ | can be packed
into [0, (1− εs)N ]× [0, N ].

Proof. W.l.o.g., assume the items in M̃ are given in
nondecreasing order according to their area. Note that
a(i) ≤ εsmallN

2 ≤ εs
2 N

2 for any i ∈ M̃ . Let
S := {1, . . . , j} be such that (1−2εs)

2 N2 ≤
∑j
i=1 a(i) ≤

(1−εs)
2 N2 and

∑j+1
i=1 a(i) > (1−εs)

2 N2. Then from
Theorem 19, S can be packed into [0, (1−εs)N ]×[0, N ].
As we considered items in the order of nondecreasing

area, |S||M̃ | ≥
( 1

2−εs)
( 1

2+εa)
. Thus, |S| ≥

(
1− (εa+εs)

( 1
2+εa)

)
|M̃ | >

(1− 2εa − 2εs)|M̃ |.

From Lemma 18, we can assume w.l.o.g. that
a(ET,εs ∪ EB,εs) ≤

(1+8εs)
2 N2. Let X be the set of

items in M3 that intersect both ST,εs and SB,εs and Y :=
{ET,εs ∪EB,εs} \X . Define Z :=M3 \ {X ∪ Y } to be
the rest of the items. Let us define w(X) =

∑
i∈X w(i).

Now there are two cases.
Case A. w(X) ≥ 12ε·εsN . From Lemma 17, all items in
X intersect both ST,ε·εs and SB,ε·εs . So the removal of
X∪CT,ε·εs∪CB,ε·εs creates a few empty strips of height
N and total width of w(X). By a simple permutation
argument, all items in Y ∪Z can be packed inside [0, N−
w(X)]× [0, N ], leaving an empty vertical strip of width
w(X) on the right side of the knapsack. Next we rotate
CT,ε·εs and CB,ε·εs and pack them in two vertical strips,
each of width ε · εsN . Note that w(i) ≤ ε · εsN for all
i ∈ X . Now take items in X by nondecreasing width, till
their total width is in [w(X)−4ε ·εsN,w(X)−3ε ·εsN ]
and pack them into another vertical strip. The cardinality
of this set is at least (w(X)−4ε·εsN)

w(X) |X| ≥ 2
3 |X|, where

the last inequality follow by the Case A assumption.
Hence, at least 2

3 |X|+ |Y |+ |Z| ≥
2
3 (|X|+ |Y |+ |Z|)

items can be packed into [0, (1− ε · εs)N ]× [0, N ].
Case B. w(X) < 12ε · εsN . Observe that Y = (ET,εs \
X)∪̇(EB,εs \X), hence |Y | = |ET,εs \X|+ |EB,εs \X|.
Assume w.l.o.g. that |EB,εs \X| ≥ |Y |/2 ≥ |ET,εs \X|.
Then remove ET,εs . We can pack X on top of M \
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ET,εs as 12ε · εs ≤ εs − ε · εs for ε ≤ 1/13. This
gives a packing of |X|+ |Z|+ |Y |

2 . On the other hand,
as a(X ∪ Y ) = a(ET,εs ∪ EB,εs) ≤

(1+8εs)
2 N2, from

Lemma 20, it is possible to pack at least (1 − 2εs −
8εs)|X ∪ Y | ≥ (1 − 10εs)(|X| + |Y |) many items into
[0, (1− ε · εs)N ]× [0, N ].

Thus we can always pack a set of items of cardinality
at least

max{(1− 10εs)(|X|+ |Y |), |X|+ |Z|+ |Y |2 }
≥ 1

3 (1− 10εs)(|X|+ |Y |) + 2
3 (|X|+ |Z|+

|Y |
2 )

≥ 2
3 (1− 10εs)(|X|+ |Y |+ |Z|)

= 2
3 (1− 10εs)|M3|.

This concludes the proof of Lemma 15.
The 4

3 + ε approximation mentioned in Theorem 4 is
obtained by combining the above approach with some
techniques developed for 2DK in the weighted case.
In particular, we use part of the vertical free strip
guaranteed by the resource contraction lemma to pack
the thin items as defined in that section.

VI. WEIGHTED CASE WITH ROTATIONS

In the weighted case it is not possible to simply
discard large items as this might be too costly. We
first show that if there is no massive item, i.e., an item
with both side lengths at least (1 − ε)N , then we can
achieve an analogous resource contraction lemma to get
a container packing with a profit of ( 23 −O(ε))p(OPT ).
We separately consider the case when there exists a
massive item and show that even in that case there exists
a container packing with ( 23−O(ε))p(OPT ) profit. This
gives us a ( 32 + ε)-approximation, see Theorem 4.

VII. OPEN PROBLEMS

The main problem that we left open is to find a PTAS,
if any, for 2DK and 2DKR. This would be interesting
even in the cardinality case. We believe that a better
understanding of natural generalizations of L-packings
might be useful. For example, is there a PTAS for ring-
packing instances arising by shifting of long items? This
would directly lead to an improved approximation factor
for 2DK (though not to a PTAS). Is there a PTAS for
L-packings with rotations? Our improved approximation
algorithms for 2DKR are indeed based on a different
approach. Is there a PTAS for O(1) instances of L-
packing? This would also lead to an improved approxi-
mation factor for 2DK, and might be an important step
towards a PTAS.
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